منابع مشابه
Electrically tunable band gap in silicene
We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electr...
متن کاملTunable and sizable band gap in silicene by surface adsorption
Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controlla...
متن کاملObservation of an electrically tunable band gap in trilayer graphene
A striking feature of bilayer graphene is the induction of a significant band gap in the electronic states by the application of a perpendicular electric field1–7. Thicker graphene layers are also highly attractive materials. The ability to produce a band gap in these systems is of great fundamental and practical interest. Both experimental8 and theoretical9–16 investigations of graphene trilay...
متن کاملElectrically tunable magnetoplasmons in a monolayer of silicene or germanene.
We theoretically study electrically tunable magnetoplasmons in a monolayer of silicene or germanene. We derive the dynamical response function and take into account the effects of strong spin-orbit coupling (SOC) and of an external electric filed E(z) perpendicular to the plane of the buckled silicene/germanene. Employing the random-phase approximation we analyze the magnetoplasmon spectrum. Th...
متن کاملTunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors.
By using first-principles calculations, we predict that a sizable band gap can be opened at the Dirac point of silicene without degrading silicene's electronic properties with n-type doping by Cu, Ag, and Au adsorption, p-type doping by Ir adsorption, and neutral doping by Pt adsorption. A silicene p-i-n tunneling field effect transistor (TFET) model is designed by the adsorption of different t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2012
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.85.075423